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THE PRESEET STATE OF THE QUESTION OF TURBULENT 

ELECTROCONDUCTIVITY I N  PLASMA AND CERTAIN QUESTIONS 

RELATED TO THE DYNPXICS OF THE MAGNETOSPWERE.1 

V. A. Liperovskiy 

ABSTRACT. Phenomena r e l a t e d  t o  plasma turbulence i n  
t h e  circumsterrestrial region of space are considered, and 
concepts r e l a t e d  t o  turbulen t  electroconductivity are 
surveyed. Laminar and turbulent electroconductivity of 
a plasma are discussed. 
are estimated, and t h e o r e t i c a l  concepts r e l a t e d  t o  a 
plasma i n  a s t rong  electric f i e l d  are presented. 

Relations f o r  a turbulen t  cur ren t  

Irlt roduct i on  

' ./l* The present survey dea l s  with c e r t a i n  phenomena r e l a t ed  t o  plasma - 
turbulence i n  the  c i r cumte r re s t r i a l  region of space. 

day concepts, circumterrestrial space, due t o  the  Earth's magnetic f i e l d ,  is 

physically speaking a g igan t i c  plasma t r a p  which in t e rcep t s  t h e  f l u x  of plasma 

According t o  present- 

coming from t h e  Sun. 
geoniagnetic plasma t r a p  has  been conducted f o r  a r e l a t i v e l y  long t i m e ,  and it 

has picked up momentum with the  developnent of d i r e c t  means of space research, 

such as a r t i f i c i a l  satellites and in te rp lane tary  space probes, 

An inves t iga t ion  of t he  s t r u c t u r e  and dynamics of t h i s  

The t h e o r e t i c a l  concepts of t h e  s t r u c t u r e  and dynamics of t h e  geomagnetic 

cavi ty  u n t i l  recent ly  were based on t h e  laminar model of circumterrestrial 

plasma. These concepts are completely analogous t o  the concepts of laminar 
. . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .  
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s t a b l e  plasma involved i n  thermonuclear reac t ions  which held sway over t h e  

minds of s c i e n t i s t s  f o r  over a decade. 

When i t  had beconle clear during recent  years t h a t  t he  numerous forms of 

i n s t a b i l i t i e s  i n  thermonuclear plasma, discovered theo re t i ca l ly  and experimen- 

t a l l y ,  leave hardly any hope f o r  producing laminar high-temperature plasma, 

there  has been a strong: outburst  of research a c t i v i t y  i n  the  area of turbu- 

l e n t  plasma. 

and describe plasma phenomena and proper t ies  which appear as a result of 

i n s t a b i l i t i e s .  

The objec t ive  of t h a t  research has  been t o  p red ic t ,  explain, 

The mathematical apparatus used by theore t ic ians  i n  t h i s  f i e l d  by and 

l a r g e  corresponded t o  t h e  so-called weak nonl inear i ty  approximation i n  which 

-when o s c i l l a t o r y  m t i o n  w a s  discussed -nonlinear terms i n  t h e  pertur- 

ba t ion  would remain. Thus, i t  w a s  poss ib le  t o  use expansions i n  powers of 

t h e  amplitude of per turba t ion  f i e l d s  a r i s i n g  with t h e  development of ins ta -  

b i l i t i e s .  

describe weakly turbulent  quas is ta t ionary  states of plasma r e s u l t i n g  from its 

i n s t a b i l i t i e s ,  and t o  shed l i g h t  on t h e  r a d i c a l l y  new e f f e c t s  occurring i n  
those states. Those include, f o r  example, c o l l e c t i v e  in t e rac t ions ,  changes 

of d i spers ive  proper t ies ,  anomalous d i f fus ion ,  wave flux braking. 

The present state of nonlinear plasma theory makes it poss ib le  t o  

Studies of cosmic plasma proceeded i n  p a r a l l e l  with those inves t iga t ions .  

It is obvious t h a t ,  i n  the  r a r e f i e d  plasma occurring i n  circumterrestrial 

space, many phenomena can b e  described using laminar concepts. However, it 

is  clear t h a t  an increasingly wide range of phenomena i n  t h e  physics of 

c i r cumte r re s t r i a l  plasma can be  in t e rp re t ed  only on t h e  b a s i s  of concepts 

involving a developed turbulence, t o  say nothing of t h e  f a c t  t h a t  t h e  boundary 

region between in te rp lane tary  space and t h e  magnetosphere of t h e  Earth has  a 

pronounced quas is ta t ionary  turbulence t o  which laminar concepts are hardly 

generally appl icable .  

A separation of tu rbulen t  regions, and a determination of t h e  level of 

turbulence, are a l s o  important i n  so lv ing  problems of t h e  acce lera t ion  of 
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p a r t i c l e s  i n  the magnetosphere and i n  understanding the  dynamics of t he  

Earth 's  rad ia t ion  b e l t s ,  auroras, and other  phenomena. 

Swift i n  [l] has proposed considering the  region of t he  magnetosphere 

close t o  the  zone of auroras as a region of ionic-sound turbulence. 

following experimental data: 

The 

1) t h e  f a c t  t h a t  e lectrons e m i t t e d  during auroras gain t h e i r  energy - /3  
d i rec t ly  during t h e i r  emission [2],  

during auroras,  currents  of i n t e n s i t i e s  up t o  lo5 A appear i n  the  

ionosphere ( i t  is not proven where they are formed), 

t h e  presence i n  the aurora zone of a high l e v e l  of ultralow-frequency 

waves indicated by both terrestrial and satell i te data ,  according t o  

2) 

3) 

[I1 , 

can be explained i f  w e  assume t h a t  i n  the  Earth 's  magnetosphere a separat ion 

of charges may occur caused by the  electric f i e l d s  perpendicular t o  the  geo- 

magnetic f i e l d .  

t he  e l e c t r i c  f i e l d s  produce currents  along the  magnetic force l i n e s ,  un i t ing  

space charge regions across the conducting ionosphere. When t h e  currents  are 

of s u f f i c i e n t  s t rength,  there  arises i n  the  plasma an ionic-sound i n s t a b i l i t y  

(manifested r>n the  ground as ultra-low frequency noise) which results i n  the  

appearance of "co l lec t ive  interact ions"  of p a r t i c l e s  with waves , and conse- 

quently i n  an anomalous res i s tance  of t he  magnetosphere plasma. As a result 

of t h i s  type of turbulence i n  a plasma which is c o l l i s i o n  f r e e  ( in  the sense 

t h a t  t he re  are no pa i rwise  co l l i s ions )  electrodynamic heating of e lec t rons  t o -  

k i lovo l t  energies may take place. 

obviously capable of producing auroras and o ther  accompanying phenomena. 

I n  an almost co l l i s ion- f ree  plasma of t h e  magnetosphere, 

A f l u x  of such 'hot" e lectrons is 

It should be emphasized t h a t  the  paper re fer red  to ,  wr i t ten  i n  1965, 
made use of the  concepts and estimates re l a t ed  t o  turbulent  flow which were 

developed by Buneman [3] i n  1959 when the  theory of turbulent plasma w a s  i n  

i t s  infancy. 

plasma, one can say t h a t  [l] is accurate  only as t o  its qua l i t a t ive ,  bu t  not  

From t h e  vantage point  of present  concepts about turbulent  
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quan t i t a t ive  (even i n  its est imates) ,  concepts about the  decelerat ion of 

e l ec t ron ic  streams co l l i d ing  with ionic-sound pulsat ions of high amplitude. 

The estimates of turbulent  electroconductivity of the  type e- 5 0 0 0 2  - 14 
I 

W S k  , t ha t  w e r e  used by Swift, from t h e  present point  of view may be applica- 

b l e  only t o  the  very beginning of t h e  development of an i n s t a b i l i t y  i n  an 

isothermic plasma with a current.  

In  quansistationary states which may last very long the  turbulent  

electroconductivity Grul/E , and t h e  current  densi ty  is constant within a wide 

range of var ia t ion  of t he  e l e c t r i c  f i e l d  i f  E is smaller than some E**. 
st ronger  f i e l d s  (’ a _  f i / ( a n d - G ~ 4 , # ’ e  respect ively.  

For 

For t h i s  reason i t  is  timely and advisable t o  make a survey of present 

concepts r e l a t ed  t o  turbulent electroconductivity and an appl icat ion of these 

concepts t o  both the  problem posed i n  [l] and t o  a number of o ther  problems 

occurring i n  the  physics of the  magnetosphere i n  which i t  is necessary t o  

know the function CCE) e 

5 1. Laminar and Turbulent Electroconductivity of Plasma 

- The questions r e l a t ed  t o  the  turbulent  electroconductivity of plasma have 
- __ 

been q u i t e  in tens ive ly  s tudied during recent  years . .. by _ -  a .- number - -  of authors 

[ 4  - 111. 

The d i f f i c u l t y  of the problem cons i s t s  primarily i n  the  f a c t  t ha t  t h e  

exis tence of quasis ta t ionary 

apparently of short  duration. It is poss ib le  t h a t  t he re  are severa l  quasi- 

s ta t ionary  turbulent  states, each of which is characterized by its own t i m e  

s ca l e  

turbulence i n  a constant e l e c t r i c  f i e l d  i s  

Therefore, i f  one is in te res ted  i n  the  anomalous res i s tance  of plasma in 

a strong electric f i e l d  (having i n  mind any kind of formula o r  even an estimate, 
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replacing 6 ,  determined by in t e rac t ions ) ,  it is  necessary t o  understand 

c l ea r ly  t h a t  t h e  quantity 

plasma i s  located,  and on the  t i m e .  

d i r e c t l y  of a function 6.3, I cyJ . In  addi t ion,  s ince  the  turbulence level 

depends t o  a l a rge  ex ten t 'on  t h e  boundary conditions, t he  function j = j  (.E) 

w i l l  a l s o  s u b s t a n t i a l l y  depend on them. In  t h i s  case, t h e  f i e l d  may m u s t  

be understood as t h e  real f i e l d  a t  each point. 

can t ly  from t h e  i n i t i a l  "external" given f i e l d  a t  -k = 0. It must be  noted 

t h a t  here t h e  r e l a t ionsh ip  d=icE>  r e f e r s  t o  an average taken over a t i m e  

i n t e r v a l  many t i m e s  longer than t h e  period of o s c i l l a t i o n s  2rt/Cdp; f o r  t h e  

i o n i c  sound wave. 

( turb.)  depends on t h e  f i e l d  E i n  which t h e  

Therefore, w e  c l e a r l y  have t o  speak 

- / 5  

This f i e l d  may d i f f e r  s i g n i f i -  

It must b e  emphasized t h a t  w e  s h a l l  consider two cases: involving 

nonisothermic plasma Tc 5, TG and isothermic plasma Tc "-Ti. 
of view, t h e  f i r s t  case is  of g r e a t e s t  importance, since i n  t h e  second case 

t h e  turbul iza t ion  of t h e  plasma i n  t h e  electric ion  invariably r e s u l t s  i n  a 

lack  of isothermici ty ,  and i f  we  are i n t e r e s t e d  i n  longer turbulence t i m e s ,  

w e  s h a l l  dea l  only with a nonisothermic plasma. 

From our poin t  

Thus, suppose t h a t  an external electric f i e l d  f is  applied t o  a 

quasineutra1,plasma cons is t ing  of two kinds of e lec t rons  and ions  with d e n s i t i e s  

na= W2h, .  
and i n f i n i t e  i n  extent ,  and t h e  E f i e l d  t o  b e  homogeneous. 

For s impl ic i ty ,  w e  s h a l l  consider t h e  plasma t o  be homogeneous 

I f  t h e  f i e l d  i s  

s u f f i c i e n t l y  small, t h e  plasmi is  characterized by t h e  usual c o l l i s i o n  resis- 

tance. Just as was done, f o r  example, i n  [12], t o  g e t  t h e  f e e l  f o r  things we  
s h a l l  give an elementary ana lys i s  f o r  t h i s  simple cases 

Under t h e  influence of t h e  electric f i e l d ,  t h e  e lec t rons  gain a d i r e c t i o n a l  

ve loc i ty  with respec t  t o  t h e  ions,  and should t h e  c o l l i s i o n s  b e  absent t h e  

e lec t ron  ve loc i ty  would grow l i n e a r l y  with t i m e ,  Is-= et 
during each c o l l i s i o n  an electron completely lo ses  i t s  ve loc i ty ,  we obta in  the 

average speed 

Assuming that 

- __ 
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I 

where (r, = 4 /G.L is the  mean t i m e  between two e lec t ron  co l l i s ions .  

W e  s h a l l  estimate the  frequency of co l l i s ions .  Since w e  are i n  f a c t  

considering c o l l i s i o n s  with a subs t an t i a l  change of t he  momentum, i n  t h i s  type 

of c o l l i s i o n s  p o t e n t i a l  energy em/% is on the  order of the k i n e t i c  energy 

knC2/A, whence eM 2.22 hv2 , and the  cross  sect ion is 

Then the c o l l i s i o n  frequency is 

When the  ve loc i ty  of e lec t rons  is  much smaller than the  mean thermal ve loc i ty  

'lA 4-z fire, w e  can s u b s t i t u t e  C i n  Equation (1.3) ins tead  of U& t o  obtain 

This quant i ty  does not  depend on the  f i e l d  and t h e  ve loc i ty  e More 

accurate  ca lcu la t ions  y i e l d  
4 .  

.. . . . . . . .  - .. ........ . . . . .  
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where Opern \ /4Kc2h /h: ,k -is the number of e lec t rons  per u n i t  volume, 

3 e= 'dTa /Up= is  the  Debye e lec t ron  length,  &A is the  so-called Coulomb 

logarithm c em A - bo). 
- /7 

Q 
Subst i tut ing sQc according t o  Equation (1.4) i n  Equation (l.l), we 

obtain 

and consequently, Ohm's l a w  i n  the laminar case is 

where 

It may be s t a t e d  t h a t  i n  t h e  laminar case the force  ac t ing  on an electron,  

e E , is balanced by the  force of " f r ic t ion"  against  ions equal t o  t h e - l o s s  

of momentum.per un i t  t i m e  

i.e. 

Now w e  s h a l l  t u rn  t o  t h e  question: 

Ohm's l a w  ( L 5 )  va l id?  

up t o  what values of E, is the  l i n e a r  - / 8  
It is easy t o  see from Equation (1.6) t h a t  t he  l i n e a r  

7 
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Ohm's law is  va l id  as  long a s  Vo; 1~ w r - k  , i.e., under the condition 'u "CT. . 
When k 4  %jGn2, w e  must replace 

no longer constant,  and depends on the  d i r e c t i o n a l  ve loc i ty  as 

i n  Equation (1.3) with V , and then de; is 

The above r e l a t ion  

ions is  irn,uSos u 
means t h a t  the force of 

, and it  f a l l s  o f f  

" f r ic t ion"  of an e lec t ron  against  

with increasing veloc2ty "u. . 

Thus, t h e  force  of " f r ic t ion"  of an e lec t ron  aga ins t  the  ions f o r  U cc 
For IUMV! ,  t h e  force of "f r ic t ion"  r~ is  d i r e c t l y  proport ional  t o  fu 

passes through a maximum; f o r  , ZL . , _ -  ~ V T C  i t  f a l l s  o f f .  

Figure 1 a. 

The e l e c t r i c  f i e l d  E, f o r  which q r p .  = f T P  8 i s  easy t o  estimate by - I9 
subs t i t u t ing  /uU,'U'c i n  (1.6), and according t o  Equation (1.3), E,... 
2 e /A2& . More accurate  ca lcu la t ions  r e s u l t  i n  a s l ight ly- larger  - . - - - - - coe f f i c i en t -  
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(1.7) 

I f  the  electric f i e l d  E > ED, dynamic equilibrium of t h e  electric f i e l d  

E and the  forces  of f r i c t i o n  due t o  pair-wise c o l l i s i o n s  is  impossible. 

one only considers pair-wise c o l l i s i o n s ,  then f o r  E 3 
i n  the  plasma i n  an e lectr ic  f i e l d  should be f r e e l y  accelerated,  and t h e  

current  should grow l i n e a r l y  with t i m e .  

occur s ince  an ionic-sound i n s t a b i l i t y  occurs i n  a plasma f o r  Ta s>T;. The 

increasing ionic-sound f luc tua t ions  in t e rac t ing  with t h e  p a r t i c l e s  dece lera te  

them, i. e. , the  dominant r o l e  begins t o  be played by co l l ec t ive  in t e rac t ions  

ins tead  of pairwise electron-ion co l l i s ions .  

I f  

a l l  t h e  e l ec t rons  

However, i n  p rac t i ce  t h i s  does not  

I n  prac t ice ,  i n  a nonisothermic plasma t h e  i n s t a b i l i t y  of ionic-sound 

waves begins f o r  % - cs (where 

f o r  f i e l d s  much smaller than E, 
cs is t h e  speed of t h e  i o n i c  sound) e i.e. , 

§ 2. Estimated Relationships f o r  a Turbulent Current - /lo 

The i n s t a b i l i t y  involving ionic-sound waves arises when t h e  electric 

f i e l d  E> Ev is such t h a t  t he  ve loc i ty  of e lec t rons  amounts t o  '?A,& Y CS(a 
. *  

.more accurate expression can be found, f o r  example, i n  [ 5 ] ) .  Then 

. '  

Later as a r e s u l t  of t h e  development of i n s t a b i l i t y ,  a quasi-stationary ionic- 

sound turbulence i s  formed. 

f o r  f i e l d s  

Thus f o r  s u f f i c i e n t l y  long times % >> 

the  plasma is turbulen t ,  and as shown by theory, within a c e r t a i n  i n t e r v a l  

E'< E 4 E'', t h e  cur ren t  density does not  depend on E, i.e., we have a 
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plane current-voltage cha rac t e r i s t i c ,  and wd 4/E. 
s ide r  a plasma of t h e  Earth 's  magnetosphere i n  t h e  aurora zone: 

As an example l e t  us con- 

As w e  know magnetospheric electric f i e l d s  along the  magnetic l i n e s  of 
force are determined by the po ten t i a l  difference - ~ O < ( J  a t  a dis tance of 

hlooookm, i .e. ,  they are on t h e  order of w 16' V/cm. Therefore, i n  pa r t i cu la r ,  

the  magnetosphere currents  along the  l i n e s  of force  i n  the  aurora region may - 111 
ce r t a in ly  have a turbulent character.  

Thus, suppose t h a t  there  i s  a f i e l d  with E7 E* i n  a plasma, and the 

current ve loc i ty  is U e  t Cs . 
develop i n  the  plasma. 

amplitude i n t e r a c t  almost e l a s t i c a l l y  with a majority of plasma .electrons,  by 

and la rge  pa r t i c ipa t ing  only i n  an exchange of momentum. The energy exchange 

is  ins igni f icant .  

Then an ionic-sound i n s t a b i l i t y  begins t o  

The accumulated ionic-sound f luc tua t ions  of l a rge  

,--_ - _  -. - ;"' - - - - - - ~ - - ~ ~  - - . * .  , . '  - 

. .  

Figure la. Distribution- functions of e lectrons and ions i n  the 
current  plasma. 
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Figure lb .  The variance curve f o r  ionic-sound waves., 

A wave characterized by &3 and 

e lec t rons  whose ve loc i ty  i n  t h e  d i r ec t ion  

have a resonance condition W 

waves may b e  understood t o  be  a r e s u l t  of a l a r g e  number of inc idents  involving 

Cherenkovemission and an absorption of ion-sound plasmons by resonance 

electrons.  - L e t  us c l a r i f y  why t h e  i n t e r a c t i o n  of e lec t rons  with ionic-sound 

'plasmons occurs almost e l a s t i c a l l y  - t o  b e  more prec ise ,  why i t  occurs with 

i s  t r iggered  by the  so-called resonance 

is equal to%.+ = 41 /Y, i .e.,  we 
= %s. The ac t iva t ion  o r  t h e  a t tenuat ion  of 

conservation of t h e  energy of e lec t rons  i n  the zero approximation with respec t  

t o  t h e  parameteru /hcCae 

Since i n  the  process of t h e  i n t e r a c t i o n  of e lec t rons  with ionic-sound - 11. 
4- waves cr, = uv , and t h e  phase wave ve loc i ty  is  equal t o  Cs t h e  

resonance e lec t rons  moving with a ve loc i ty  on t h e  order  of thermal ve loc i ty  

e m i t  o r  absorb waves with 

6-i as compared t o c  e 

the  wave vector ,  i .e.,  perpendicular t o  3 J) which means t h a t  i n  a f i r s t  

approximation t h e  energy increase  is  0. 

which is orthogonal t o  $ within an accuracy of 

The ve loc i ty  increase a$, is obviously p a r a l l e l  t o  

11 



Since the electrons t h a t  gain momentum i n  the  e l e c t r i c  f i e l d  lo se  it due 

t o  sca t t e r ing  from the  waves, i n  the l as t  analysis  the  wave amplitude increases  

t o  a value such tha t  the  force of f r i c t i o n  of e lectrons against  waves balances 

t h e  act ion of the electric f i e l d .  

I f  i t  turns  out t h a t  i n  t h i s  s ta te  the current  veloci ty  noticeably 

exceeds the c r i t i ca l  value, then the  noise  and the  force of f r i c t i o n  w i l l  
increase as before, and t h e  ve loc i ty  4 A  w i l l  f a l l  off  u n t i l  i t  reaches a value 

near%,, e 

As a r e s u l t ,  wi thin a f a i r l y  wide range of electric f i e l d  values the  

current density remains almost constant,  and CY tu l / E .  

Following [5] w e  s h a l l  w r i t e  t he  conditions f o r  t he  equilibrium of forces  

act ing on t h e  e lec t rons  and ions. 

From these conditions one can obtain approximate information about t he  

order of magnitude of t he  energy of ionic-sound plasmons i n  a quasi-stationary 

state ( a s s k i n g  i t  exists): 

Here we took i n t o  consideration the  f a c t  t h a t ,  s ince  the  t o t a l  momentum of 

the  ionic-sound wave is  p -4 s bfc d z ,  then f o r  e lectrons 

An analogous r e l a t i o n  i s  a l s o  va l id  f o r  ions. 

t h a t  even though (2.1) and (2.2) imply 

It is necessary t o  emphasize 
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i t  by no means follows i n  a general  case. 

L e t  us now consider t h e  density equilibrium of ionic-sound plasmons. The 

k i n e t i c  equation f o r  plasmons i s  obviously of t h e  form ( i n  a homogeneous 
plasma) 

n 

I n  t h i s  equation t h e  term K i  corresponds 

homogeneity of plasmon gas i n  space is important, 

Ke due t o  the  movement of quasi-particles toward 

region with a group ve loc i ty  Cs = 2 - h  . 
An estimate . .- - of t h i s  term y ie lds  

A 

t o  t h e  case when t h e  in- 

and it describes a change of 

t h e  boundary of t h e  turbulen t  

1 

where a is  thel s i z e  of the  inhomogeneity. 

For t h e  present ,  w e  s h a l l  neglec t  t he  term (2.4), considering t h e  charac- 

teristic lateral  dimension of t he  plasma t o  be s u f f i c i e n t l y  large.  

term on the r i g h t  i n  (2.3), 

The f i r s t  /15 
gk, corresponds t o  a l i n e a r  generation of waves 

by plasma e lec t rons ,  and is determined by the  form of t h e  d i s t r i b u t i o n  function 

I n  t h i s  case f o r  a M a x w e l l  d i s t r i b u t i o n  function 

\ .  , . '  
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When t h e  t i m e  development of t h e  process i s  considered, i n  t h e  i n i t i a l  phase 

of development of an i n s t a b i l i t y  

proportional t o  cG$/'3v), decreases almost t o  zero due t o  a d i s t o r t i o n  of 

t h e  e l ec t ron  d i s t r i b u t i o n  function r e su l t i ng  from an in t e rac t ion  with waves. 

a,"". = t0.t (u. /et&) , t he  increment , 

Fina l ly ,  the  l as t  term i n  (2.3) corresponds t o  two processes: '6' = ~ ~ o n l i n a -  

+ g les  . B>ek corresponds t o  a l i n e a r  absorption of waves by resonance 

ions (having a velocity?]-; 3 . c ~ )  and a nonlinear s c a t t e r i n g  of ion-sound waves 
of f  t h e  ions,  which can be estimated as [l2, 51 

As f a r  as a l i n e a r  absorption of waves by resonance ions 

within only a framework of quas i l inear  e f f e c t s  accordint 

i s  the density of resonance ions,  T' i s  t h e  temperature) 

is concerned, then 

o t  [5] w e  have (N 
. .. 

Thus, %cres decreases with t i m e  as&'"r. Therefore, it is  necessary i n  t h e  

f i r s t  place t o  consider a process with a nondecreasing increment, t h a t  is, 

nonlinear s ca t t e r ing  by t h e  ions.  

r e s u l t s  primarily i n  a change of d i r e c t i o n  of t h e  momentum of a quasi-particle 

and i n  an i so t ropiza t ion .  

It must b e  noted t h a t  the  s c a t t e r i n g  

Furthermore, when considering nonlinear s c a t t e r i n g  by ions,  Equation (2-6) 

i n  tu rn  lo ses  i t s  v a l i d i t y ,  s ince  one must take i n t o  consideration an increase  

i n  the  number k' of resonance ions  and t h e i r  heating, d o n g  w i t h  hea t ing  of 

* Trans la tor ' s  Note: - - __ - n l  - - designates nonli?ear. - 1  
1 4  

-- 



t he  bas i c  nonresonance mass of the  ions.  

These l a t te r  processes, inc identa l ly ,  r e s u l t  i n  t h e  appearance of escaping 

ions.  

I f  one assumes t h a t  t h e  b a s i c  contribution t o  t h e  quantity Y ' i s  made by 
< nonlinear s c a t t e r i n g  by ions ,  and sets YC=&nonlin f o r  a boundless plasma i n  

t h e  quasi-s t ationary case, one then obta ins  

* * 
From Condition (2.2) w e  have, using 1' rn xCnl 

Hence we f i n d  t h a t  i n  the  quasi-stationary turbulent mode i n  regions I1 and 

I11 (Figure 2) the  t o t a l  energy dens i ty  of tu rbulen t  ionic-sound pulsa t ions  is 

increase with a growing f i e l d  E. 

It is  necessary t o  poin t  out here  t h a t  simple physical considerations 

(which are confirmed by de ta i l ed  ca lcu la t ions)  make i t  necessary t o  consider 

separately two i n t e r v a l s  of t h e  electric f i e l d  values. 

If one considers a change i n  t h e  p i c t u r e  of t h e  turbulent  quasi-stationary 

state depending on E, one can see t h a t  from E=&' t o  E =-EL! the turbulen t  

energy varies as e pu a. 
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I n  t h i s  connection, w e  have t h e  increment '6' = &5nonlin. 

Here gq , which remains equal t o  y '  with an increase i n  E, increases  

due t o  a decrease i n  t h e  quasi-linear e f f e c t ,  i.e., a decrease of t he  

reversing ac t ion  of ionic-sound waves on the  e l ec t ron  d i s t r i b u t i o n  function. 

The increase of yQ continues up toT,Om h t ;  C: ~ 0 ;  * , corres- 

t h e  ve loc i ty  u i s  

=-fa 

1'18 
Lrr s 

ponding t o  E ic E"'. Here i n  t h e  i n t e r v a l  E" 4 E 4 t - 
p r a c t i c a l l y  constant and equal t o  % c C s .  Consequently, 5 c, IWI cs - Wd. 

The corresponding sec t ion  of t h e  plane current-voltage c h a r a c t e r i s t i c  (11) 

f o r  t h e  plasma i s  shown i n  Figure 2. 

t h e  usual conductivity i n  t h e  nonturbulent plasma, 

Section I i n  t h e  diagram corresponds t o  

,F igure  2 

We note,  i nc iden ta l ly ,  t h a t  t h e  usual semi-qualitative considerations are no t  

applicable i n  Section 11. 

elec t roconduci t iv i ty ,  when one writes: 
These arguments y i e l d  an estimate for the turbulent 

16 



and, consequently, j r3 G'. 
f o r  l a rge  values of E 

Considerations of 

E?'.. 

a !  

t h i s  type are applicable only 

The inapp l i cab i l i t y  of t h e  above considerations i n  Section I1 is  r e l a t e d  

(a)  the  s t rong anisotropy of t h e  ionic-sound turbulence, and (b) t h e  to :  

s t rong reversing e f f e c t  of turbulence on t h e  por t ions  of t h e  e l ec t ron  d i s t r i -  

bution function t h a t  are responsible f o r  t he  buildup of waves. 

It should be emphasized t h a t  t he  dece lera t ion  of t h e  e l ec t ron  stream is 

most e f f ec t ive ly  achieved by waves t h a t  propagate normally t o  t h e  streams and 
t h e  energy density of such waves i n  Section I1 is considerably smaller than 

the  energy density of t h e  waves propagating i n  a d i r ec t ion  p a r a l l e l  t o  t h e  

e lec t ron  stream. 

An increase i n  E is  accompanied by an increase i n  both the  turbulent 

energy t).~ and t h e  i s o t r o p i c  turbulence. 

. The ve loc i ty  'u. is maintained near a value % zc cs with increasing E, 

because the  equilibrium of forces  (2.1) ac t ing  on t h e  e lec t rons  is maintained 

due t o  an increase of yaw G, caused by a decrease i n  t h e  quasi-linear e f f e c t ,  

and due t o  an increase  of t h e  turbulence isotropy (i.e. 
i n  the  relative number of waves propagating normally t o  t h e  current) .  

due t o  an increase  

The plane current-voltage c h a r a c t e r i s t i c  continues up t o  values E z 6' 
Ewu is  determined by the  f i e l d  a t  which the  energy density of the noise  ZJ", 
needed t o  keep 'LL c lose  t o  UQ R, Cf  , becomes so l a r g e  t h a t  

17 



Then t o  maintain noise  a t  the necessary l e v e l  there  must be  an increase i n  

the l i nea r  increment due t o  an increase of the  current  velocity.  

E > E '* t he  current-voltage cha rac t e r i s t i c  ceases t o  be planar (Section I1 
i n  Figure 2). 

For 

. 0 -  
L e t  us consider t h e  condition xi:nlg x l i n  subs t i t u t ing  

we s h a l l  obtain 

As f a r  as the current density i n  t h e  region E > E is  concerned, it 

can be found from t h e  following considerations.  Considering tha t  f'c 
_ .  

up; %rr, s e t t i n g  ye . =d,inonlin$ w e  obtain 

(2.10) 

(2.11) 

Writing Ohm's law i n  t h e  usual  form f o r  a longi tudina l  current ,  we obtain 

Thus, f o r  & > e x s  w e  have 6- A /Go W e  s h a l l  give some estimates of - /21 
1+5 E '* as applied t o  the  Earth 's  magnetosphere. 

cm , T,= ( l e  104)eV, we  f ind  tha t  E?* . .  =2x)'Q-(2*@h/cme _ _ .  
1 

Since i n  t h i s  case n = 10 0 -3 
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Near t h e  Earth, whereha* 104cm--3 f o r  Te*' IkeV, E'fl 2,10-' Y/cm. 

Measurements of t h e  electric f i e l d  i n  Earth 's  magnetosphere give, f o r  instance,  

E g 3 . i ~ - 4  V/cm [ 4 8 ]  

Thus w e  can see t h a t  i n  f a c t  both Section I1 and I11 may b e  r ea l i zed  i n  
the  magnetosphere. 

The quasi-stationary turbulent  states, described here, are i n  addi t ion  

characterized by a constant growth of t h e  temperatures of t h e  e l ec t ron  and 

ion  gases. These processes are determined, i n  addi t ion  t o  t h e  equilibirum 

conditions, by the  following equations [5] : 

(2.12) 

(2.13) 

kp: and p4 are the  pressures of t h e  ion  and e l ec t ron  gases, respec t ive ly) ,  i.e., 

roughly speaking, t he  heating is  proportional t o  t h e  t i m e .  

A de t a i l ed  analysis ,  done i n  [5, 81 shows t h a t  a f t e r  a s u f f i c i e n t l y  long 

time the  r a t i o  TQ /r; tends t o  a constant on t h e  order of 10. 

The questions r e l a t e d  t o  the  escaping e lec t rons  and ions remain t o  a l a r g e  

Within t h e  framework of t h e  quasi-l inear theory, t h e  phen- ex ten t  unexplained. 

omenon of the escape of e lec t rons  [ 4 ]  and ions [ 8 ]  can b e  important i n  t h e  

dynamics of a f u r t h e r  development of t h e  quasi-stationary states, and f o r  t he  

r e su l t i ng  current-voltage cha rac t e r i s t i c .  However, i n  r e a l i t y ,  t he re  obviously 

e x i s t  other  mechanisms responsible f o r  a dece lera t ion  of f a s t  p a r t i c l e s  

go beyond t h e  framework of t h e  in t e rac t ions  with t h e  ionic-sound waves discussed 

here. 

- /22 

t h a t  

Therefore, i f  t he  o t h e r  poss ib le  mechanisms are considered, then of 

-- - .- 
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course i t  must be expected t h a t  the  phenomenon of escape w i l l  be of l i t t l e  

s ignif icance.  

Now severa l  words w i l l  be s a i d  about a possible  s i t ua t ion  when the 

term vbf: is important. 

achieved i n  the  magnetospheric turbulent  currents  which were mentioned i n  t h e  

introduction. 

A s i t u a t i o n  of t h i s  type can i n  p r inc ip l e  b e  

It i s  w e l l  known t h a t  t h e  arcs of t h e  aurorae of ten have the  form of 

f a i r l y  th in  surfaces  of thickness on t h e  order of 1 km near Earth,  and i n  

length amounting t o  hundreds and thousands of kilometers [32]. Therefore, i n  

aw ce r t a in  cases t h e  term a 
0 % .  

physical phenomena e 

s t c a n  be  important i n  explaining ce r t a in  geo- 

Thus, l e t  us assume tha t  a l i n e a r  generation of ionic-sound plasmons i n  
t h e  plasma is  mainly compensated f o r  by t h e i r  escape across  the  boundary of 

t h e  turbulent plasma: 

(2.14) 

is  ins ign i f i can t  i n  the  balance of N,). ('nonl i n  

In  t h i s  case, however, the  l e v e l  of turbulent  energy is determined by the  

equation of t h e  equilibrium of forces  ac t ing  on t h e  ions (i.e.9 i n  t h i s  

process yi nonlin i s  important) , i.e. = hT, c E / $ m $ @ ?  e For 

E E ' the  current-voltage c h a r a c t e r i s t i c  i s  obviously planar as before - 123 
( s i n c e x i  4< y.c 6 up)' 

Although the case of very l a rge  C t p r f r  has no t  y e t  been s tudied i n  

d e t a i l ,  i t  is reasonable t o  assume t h a t  a s t a b l e  state f o r  which simultaneously 
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t he  Conditions (2.14) and t h e  conditions of t h e  equilibrium of forces  ac t ing  

on e lec t rons  and ions  (2.1), (2.2) can b e  s t ab ly  s a t i s f i e d ,  is scarce ly  

possible. 

It can b e  expected t h a t  generally speaking the re  w i l l  not b e  turbulen t  

s t a t iona ry  states of current  plasma when the  relative r o l e  of t he  term 

%2 i s  enhanced, i.e. t h e  waves w i l l  not escape t h e  turbulent region. a IC. 
To t h i s  i t  must b e  added t h a t  obviously a t  the  boundary of a "tube" of a 

turbulent  current  where the  term 

current  v e l o c i t i e s  of e lec t rons  and ions  may b e  much higher when t h e  processes 

a t  t h e  boundary are nonstationary. 

df, is always important t he  average 

Development of a turbulent  nonstationary process a t  t h e  lateral boundary 

of a current  tube i n  space, as w e  assume, takes place during decay of t h e  

aurora when -because of t h e  groove i n s t a b i l i t y  - t h e  luminous su r face  of 

the aurora becomes thinner ,  forming wrinkles, "draperies", increasing t h e  

r e l a t i v e  sur face  of cur ren t  plasma, and, consequently, t h e  volume of t h e  plasma, 

where t h e  term describing the  escape of plasmons a w  v Ng is important. In 

t h i s  connection a sharp b u r s t  of ultralow-frequency waves and t h e  cur ren t  

takes place during decay of aurora. 

We must emphasize t h a t  the c r i t e r i o n  of a turbulent quasi-stationary 

state may b e  wr i t t en  

t h e r e  a breakdown of 

escape of plasmons. 

i n  t h e  form Ynonlin %b?f!es Thus when 

(2.15) 

t he  turbulent quasi-stationary s ta te  occurs because of t h e  

The last condition can a l s o  be  w r i t t e n  as 
_ _  . - - I - __ - - __ - 

(2.16) 
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4 If ,  as an example, w e  take i n  t h e  region of aurora a - 2.10 
then)c%/& hr .loe2. 
by a s h o r t  nonstationary phase of a f r e e  acce lera t ion  of p a r t i c l e s  i n  the  

e l e c t r i c  f i e l d ,  w i l l  occur f o r  E (v 9,2 E ' ' ,  i.e., i n  t h e ~ p l a n e  region of 
t he  current-voltage cha rac t e r i s t i c .  

cm, b > y  2. lo2 
I n  t h i s  case decay of t he  turbulen t  cur ren t ,  accompanied 

3. Modern Theoretical  Concepts r e l a t ed  t o  a 
Plasma i n  a Strong Electric Field 

We proceed now t o  survey modern t h e o r e t i c a l  notions about behavior of 

a plasma i n  a s t rong  electric f i e l d .  

F i r s t  of a l l  it w i l l  be noted t h a t  the  case E <'E*- when the  constant 

ve loc i ty  of  t h e  e l ec t ron  d r i f t  relative t o  ions i s  a r e s u l t  of braking - w a s  

studied a long t i m e  ago, and t h e  corresponding theory has been presented i n  

numerous monographs and textbooks ( f o r  example, 113, 14, 151). 

Under the condition E v E * an anomalous l a r g e  r e s i s t ance  of a non- 

isothermic plasma w a s  observed many t i m e s  experimentally i n  t h e  electric f i e l d ,  

i .e . ,  t he  e lec t rons  w e r e  no t  f r ee ly  accelerated 118, 201, To explain this 

phenomenor) a number of authors have developed a nonlinear theory which implies 

* t h a t  t he  anam+ous res i s tance  of a plasma is a consequence of the s c a t t e r i n g  

of e l ec t rons  by ionic-sound no i se  of grea t  amplitude, i.e., it occurs during 

co l l ec t ive  in t e rac t ions  [23]. * 

1 

As already indica ted  i n  t h e  preceding sec t ion ,  i n  r e l a t i o n  t o  t h e  ionic- 

sound noise  a nonisothermic plasma (Te >> T,) is  unstable i f  t h e  ve loc i ty  is  

g rea t e r  than the  ve loc i ty  of t h e  i o n i c  sound. According t o  14, 111 t h e  problem 

under consideration can be  described by a system of equations f o r  t h e  e l ec t ron  

and i o n i c  d i s t r i b u t i o n  function +a. 

of t h e  Fourielt p o t e n t i a l  of t he  ionic-sound noise\?%i2.(or t h e  dens i ty  of t h e  

number of t h e  ionic-sound plasmons Nh) e 

4' and f o r  the  mean square of a component 

L -  
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The s t a r t i n g  system of equations, according t o  [ 4 ]  has the  form 

The s t a r t i n g  system of equations does not  take i n t o  account pairwise 

co l l i s ions .  

t he  Maxwell d i s t r ibu t ion .  The ex te rna l  magnetic f i e l d  is zero; t h e  magnetic 

The ve loc i ty  d i s t r i b u t i o n  of e l ec t rons  i s  assumed t o  b e  c lose  t o  

f i e l d  of t h e  current  is  negl ig ib ly  small. 

Here cGbt) is  t h e  e l ec t ron  d i s t r i b u t i o n  funct ion,  asp is the  
* -  

di f fus ion  coe f f i c i en t  of e lec t rons  by ionic-sound waves 

of t h e  increase of a Kth harmonic of ionic-sound waveso -References [4.91 w h e n  

considering the  time-dependent problem do not  take i n t o  account t h e  tine 

dependence of t h e  ion  d i s t r i b u t i o n  function. 

$K is t h e  increment 

-. - . __- - - - . - -- - __ 

Thus t h e  system., (3.1) - (3 .4)  
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describes the  prbcess of e l ec t ron  dece lera t ion  by ionic-sound waves f o r k  C ti 
= -/e E (i.e., up t o  a t i m e  when t h e  ions reach a ve loc i ty  equal t o  the  

ve loc i ty  of sound u;. = 0lC05 CQ E / M ) t o  Cc) 
1 

As w e  can see from t h e  equations, a buildup of waves with parameters 

and E i s  achieved with the  help of resonance p a r t i c l e s  whose ve loc i ty  i n  t h e  

d i r ec t ion  of t h e  wave vec tor  is  equal t o  the  phase ve loc i ty  of t h e  wave 
w = ES. 
both t o  the presence of t h e  electric f i e l d ,  and t o  a deceleration by the  ionic- 

sound noise. 

The va r i a t ion  of the e l ec t ron  d i s t r i b u t i o n  function is r e l a t e d  

I f  t he  electric f i e l d  E o  i s  applied i n i t i a l l y ,  t he  e lec t rons  begin t o  

acce lera te ,  and as soon as t h e i r  ve loc i ty  becomes g rea t e r  than e,, i o n i c  

sound i n s t a b i l i t y  begins t o  develop: i n i t i a l l y  exponentially, and then the  

increment must become zero s ince  t h e  work done by the  electric f i e l d  on t h e  

p a r t i c l e s  of t h e  plasma does no t  increase  f a s t e r  t h a n t 2 ,  and i n  t h e  f i n a l  

ana lys i s  the  energy of o s c i l l a t i o n s  is obtained from the  work done by the  

f i e l d .  

The f i r s t  i n i t i a l  s t a g e  of i n s t a b i l i t y  development, which i s  most 

d i f f i c u l t  t o - so lve  ana ly t i ca l ly ,  w a s  inves t iga ted  i n  d e t a i l  by F ie ld  and 

Fried [SI who used a computer. Their paper shows t h a t  the  problem is  essen- . 
t i a l l y  not one-dimensional, and although the  propagation of waves, p a r a l l e l  

t o  t he  applied f i e l d ,  plays an important r o l e  i n i t i a l l y ,  as t i m e  goes on t h e  

waves begin t o  propagate primarily a t  f i n i t e  angles with t h e  waxis along 

which t h e  electric f i e l d  i s  d i rec ted .  

by Equation (3.1) occurs b a s i c a l l y  a t  an angle i n  t h e  ve loc i ty  space. 

I - /27 

I n  o the r  words, t he  d i f fus ion  described 

We s h a l l  give t h e  computer r e s u l t s  from [9] f o r  t he  time-dependence 

t h e  mean ve loc i ty :  I 

of 
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Figure 3 

. From t h i s  w e  see t h a t  t h e  mean ve loc i ty  and the current a t t a i n  a maximum, /- 
and the  heating of e lectrons is  seen t o  continue afterwards, 

Qual i ta t ively t h i s  type of ve loc i ty  behavior can be explained by t h e  f a c t  

t ha t  the d i f fus iQn coef f ic ien t  D i n  t h e  ve loc i ty  space increases sharply up 

t o  tha t  t i m e  i n  t h e  ve loc i ty  region'U-"- 0. 

I 

The second s t age  of t he  process was studied i n  d e t a i l  i n  [4] on t h e  bas i s  

of an assumption about t he  existence of an "almost quasi-stationary state" 

when t h e  force  of dynamic f r i c t i o n  does not permit a l a rge  port ion of the  

electrons t o  accelerate f ree ly .  

the s t a r t i n g  system of equations, corresponding t o  a state i n  w h i c h  t he  waves 

I n  the  same paper a so lu t ion  w a s  found f o r  
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are s t a b l e  f o r  a l l  ang le so '  -> s/Z 

f o r n / z  3 0'3 0.  The wave d i s t r i b u t i o n  function C \ l ~ , ~ l = ( % \ ,  +P\\gr\s/35t 

i s  approximated by a formula Hu,e = $6 S(K- cc,) , where IEo is  determined by 

the  conditions s( x., e)-= 0 and 3A f ( K o 3 Q ) - = 0  f o r  t h e  angles 0 which are 

not very c lose  t o  zero. However, f o r  angles 0 c lose  t o  zero t h e r e  are no 

s t a t iona ry  so lu t ions ,  and i n  t h i s  connection t h e  important r e s u l t  was obtained 

t h a t  t h e  energy of t h e  ionic-sound waves increases proportionately t o  t h e  t i m e  

t \~K,o' < a), and t h e  increment y r ~ , ~ ~  = 0 

.- 

'c. Ck. A de ta i l ed  ana lys i s  of t h e  r o l e  of escaping e lec t rons  has shown 

t h a t  t h e i r  contribution t o  the  increment is  ins ign i f i can t .  

obtained corresponds t o  an "almost constant" s a tu ra t ion  cur ren t  8 N 
The work of  t h e  electric f i e l d  during a time 

The so lu t ion  

hoes.  

on an increase  i n  the  energy of o s c i l l a t i o n s  and t h e  heating of e lec t rons .  

Furthermore (within t h e  framework of t h e  theory) due t o  t h e i r  hea t ing  

t h e  e l ec t rons  sbould start escaping, and the  cur ren t  should increase  with t h e  

t i m e .  

t i m e ,  and f o r  e' 
The-denstity of the  o s c i l l a t i o n  energy increases proportionally t o  the  

& i t  reaches UrTe e 

W e  should emphasize once again t h a t  wi th in  t h e  framework of [43 t he  ionic- 

sound i n s t a b i l i t y  l i m i t s  growth only i n  the  t i m e  % < ** , and a constant 

segment of t he  current-voltage c h a r a c t e r i s t i c s  occurs a l s o  when t d t a  
Furthermore, the  so lu t ions  under consideration - which are not ,  s t r i c t l y  

speaking, quasi-stationary, because of escaping e lec t rons  - are va l id  only 
-a 

i f  t h e  t i m e  t h a t  i t  takes  f o r  an i n s t a b i l i t y  t o  develop, t ; r / Y I < ~ ~ C t / \ r c ) - _ ;  
is  less than*;, i .e . ,  

__ L ,-  - I - 

, 
I 
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Furthermore, among t h e  most important papers t h a t  develop the theory of 

plasma turbulence i n  a s t rong  electric f i e l d  w e  must include a paper written 

by Kovrizhnykh [7]. 

Reference '[7] takes i n t o  account both the i n t e r a c t i o n  of e l ec t rons  with 

t h e  ionic-sound noise  and the  pairwise co l l i s ions  ( [ 6 ]  is devoted t o  an inves- 

t i g a t i o n  of an analogous problem i n  a one-dimensional model), and as a result 
obtains  a corresponding ana ly t i c  so lu t ion  f o r  a quasi-stationary spectrum of 

ionic-sound noise. Reference [7] obtains  e x p l i c i t  equations f o r  t he  time- 
dependence of t he  mean k i n e t i c  energies of plasma e lec t rons  and ions. The 

equations imply t h a t  t h e  presence of  i o n i c  absorption r e s u l t s  i n  in t ense  

heating of t h e  ion  component of t h e  plasma whose rate is  proportional t o  the  

va lue  of t h e  ex te rna l  f i e l d  E. Since t h e  c o l l i s i o n s  were taken i n t o  account 

i n  171, i t  w a s  #possible  t o  f ind  t h e  va lue  of t h e  electric f i e l d  below which 

the  number of t he  escaping e lec t rons  i s  negl ig ib ly  s m a l l .  

- / 30 
i' 

- ____ 

Thus, i n  [7] t h e  s t a r t i n g  system has the  form 

where 

, I ' I  
descr ibes  the Lktndau a t tenuat ion  due t o  ions,  and 
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descr ibes  the, a t tenuat ion of sound due t o  ion-ion co l l i s ions  [21], 

is  the  frequency of electron-ion co l l i s ions .  - /31 

The expressions a d g  and ' xj~  are defined as before by (3.2) and ( 3 . 4 )  l 
As we can eas i ly  see, here the  only ex t ra  terms are those describing c o l l i s i o n s  

i n  the  k i n e t i c  equation f o r  e lec t rons  (3.1) and i n  the  k i n e t i c  equation f o r  

ion-sound plasmons (3.3) . 

- .- - -. 

In  cont ras t  with [ 4 ]  when c o l l i s i o n s  are taken i n t o  account there  i s  a -- 
quasi-stationhry so lu t ion  f o r  t he  densi ty  of ion-sound noise  IN (k) e We 
s h a l l  write these equations as given i n  [7 ] :  

(3.10) 
(con' t l 
on next 
page) 
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. ! .  - ~ . L 

\ 
Here & '  is the  root  of an equation 

(3.10) 
(con' t . ) 

Furthermore, [7]  shows tha t ,  j u s t  as i n  the  case when co l l i s ions  w e r e  not  taken 

i n t o  account, a plane current-voltage c h a r a c t e r i s t i c  is va l id  within a ce r t a in  

t i m e  i n t e rva l ,  i.e., t he  res i s tance  of a plasma turns  out t o  be d i r e c t l y  pro- 

port ional  t o  the  applied f i e l d .  

stage there  occurs an increase of t h e  electron and ion temperatures, which 

r e s u l t s  i n  an increase of the number of escaping electrons,  and a cessation of 

the  s ta t ionary  state which is then no longer described by t h e  system of 

equations given above. 

In  addi t ion,  within a ce r t a in  quasi-stationary 

It should be emphasized t h a t  ne i the r  i n  [7] nor i n  [4] w a s  the  decelerat ion 

of the  ion gas by the  ionic-sound noise  ever considered, and consequently, t h e  

r e s u l t s  ob$ained i n  [7]  are va l id  i n  a l l  cases f o r  the  t i m e  k-<$Qe 

The next s t ep  i n  development of the theory of turbulent  plasma i n  a 
constant e l e c t r i c  f i e l d  w a s  [8] which is  a continuation of [7]. 

Reference [7] ,  because of i t s  neglect  of t h e  anisotropy of t h e  ion 

d i s t r i b u t i o n  function, s t r i c t l y  speaking, contains va l id  r e s u l t s  only for t he  /33 
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case when frequency of ion-ion c o l l i s i o n s  i s  so high t h a t  t he  p r inc ipa l  r o l e  

i s  played by the  c o l l i s i o n  absorption of waves, r a t h e r  than Cherenkov absorp- 

t ion .  Reference [8] generalizes the  r e s u l t s  obtained i n  [7] t o  include t h e  

case when no t  only the  c o l l i s i o n  absorption, bu t  a l s o  the  resonance absorption 

of waves by ions  is important. 

The system of equations i n  [8] as compared with the  system (3.5) - (3.7) 
add i t iona l ly  includes t h e  k i n e t i c  equation f o r  resonance ions  and the  equation 

f o r  t h e  mean energy of thermal ions. 

In  t h e  paper equations are derived describing the  processes of hea t ing  

the  e lec t ron  and ion  plasma components. 

question of hea t ing  resonance ions (having v e l o c i t i e s  .* 
minimum phase ve loc i ty  of sound waves) whose de ta i l ed  ana lys i s  cannot b e  done 

without taking i n t o  account t he  anisotropy of t he  ion  absorption, and r equ i r e s  

a simultaneous so lu t ion  of t h e  equations f o r  both t h e  e lec t ron  and the  ion  

d i s t r i b u t i o n  functions. The paper shows t h a t  under c e r t a i n  conditions ( for  

s u f f i c i e n t l y  strong electric f i e l d s )  t h e  process of hea t ing  resonance ions  may 

lead  t o  t h e  appearance of escaping ions  and e l ec t rons  of high energy. 

In  addi t ion ,  emphasis w a s  l a i d  on the 

grea te r  than the  

It is  necessary t o  poin t  out ,  f i r s t  of a l l ,  t h a t  when solving the  problem 

i n  [8] and t h a t  s t a t e d  i n  [7], t h e  nonlinear i n t e r a c t i o n  of waves among them- 

selves w a s  completely neglected, and t h e  so lu t ion  f o r  t h e  wave spectrum was  
assumed t o  have the  form (3.8), t h a t  of a e function. 

uniqueness of t h i s  type of so lu t ion  w a s  no t  shown. 

I n  addi t ion,  the 

Secondly, t h e  plane current-voltage c h a r a c t e r i s t i c  obtained i n  [ 8 ] ,  when 

t h e  noise  energy increases  l i n e a r l y  is, s t r i c t l y  speaking, v a l i d  only when 

t' i / d n o n l i n .  _. 

' 8  

Within the  framework of equations used i n  [ 8 ]  an explanation w a s  made of /34 
one important f a c t .  I f  the electric f i e l d  s a t i s f i e s  t h e  inequa l i ty  
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(3.12) 

where c, hr 6 UT;., then the  number of escaping electrons is  exponentially 

small; however, i f  t he  f i e l d  is su f f i c i en t ly  high and the  condition (3.12) is 

not  s a t i s f i e d ,  then the  d i s t r ibu t ion  function w i l l  be f a r  from Maxwellian i n  

the  e n t i r e ' v e l o c i t y  range, and an increase of the  electron temperature w i l l  b e  

accompanied by the  appearance of a l a rge  number of escaping electrons during 

< .  .. 

An analogous a s se r t ion  w a s  a l s o  made concerning ions: f o r  E 3 FO 
Cv~+/yn;f" 2 the  escaping ions appear when %-t; .-- xlr - < b 1 4 ~ f ~ e f ' ?  - - - I t  

must be emphasized t h a t ,  as a number of authors state, i n  r e a l i t y  escape may 

not  be  observed due t o  mechanisms tha t  were not  taken i n t o  account i n  the  

theory of [8] ( for  example, braking by Langmuir waves which i n  p r inc ip l e  could 

be excited by escaping electrons) .  

The nonlinear e f f e c t s  were f i r s t  considered by Kingsen i n  [ll] (however, 

the  k ine t i c s  of ions was  no t  taken i n t o  account therein)  who continued work 

done i n  [ 4 ] , .  Kingsen assumed t h e  exis tence of a quasi-stationary so lu t ion  for 
t h e  spectrum of t he  ionic-sound turbulence i n  the  form: 

(3.13) 

c_ 

where yA is t h e  l i n e a r  increment, and \rHu: is determined by t h e  equation - f 35 
-.-* 
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(3.14) 

with &, a 4 /A 4 ( the ion ic  portion of t he  ionic-sound dispersion curve). 

It should be pointed out  t h a t  t h e  nonlinear damping, accounted f o r  i n  [ll], 
is  responsible for  the t r ans fe r ' o f  momentum t o  ions,  and thus f o r  the  s ta t ion-  

a r i t y  of t h e  process ( t h i s  is analogour t o  [ 8 ] ,  where "collision" damping w a s  

responsible f o r  s t a t iona r i ty ) .  One of the  important r e s u l t s  obtained i n  1111 
is  the  conclusion 

r a t i o  of temperatures is  establ ished i n  the  current  plasma: 

tha t  f o r  any i n i t i a l  nonisothermicity a certain "universal" 

(3.15) 

Reference [ll] estimates t h e  l i m i t  of app l i cab i l i t y  of the  theory developed 

i n  [7, 81 when t h e  quasi-s ta t ionari ty  is achieved as a r e s u l t  of co l l i s ions :  

(3.16) 

. .  
I 3 6  

%- ~ 1. e., fo r  jq h.e , ,108, 'x IT,  is severa l  hundred which can of course - 
hardly be t h e  case under-s ta t ionary conditions i n  the  magnetosphere of interest 

t o  us now. 

There is s t i l l  another e f f e c t  which i n  p r inc ip l e  may b e  responsible f o r  

a t r ans fe r  of momentum t o  nonresonance ions,  and consequently, f o r  s t a t iona r i ty .  

This is displacement of phase v e l o c i t i e s  of ion-sound waves due t o  a weak 

inhomogeneity of the  plasma, discussed i n  [la]. The essence of t h e  e f f e c t  is 

as follows. 

i.e., when the  t i m e  during which an i n s t a b i l i t y  increases i s  considerably less 
than the  c h a r a c t e r i s t i c  damping t i m e  r e l a t e d  t o  the  inhomogeneity, t he  d i s t r i -  

bution function of the  plasmons must s a t i s f y  Liouvi l le ' s  equation (see9 f o r  

example, [22]): 

I n  the  quasi-classical  approximation, when ( G'a$)&tI 
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(3.17) 
. 

The last  term on the  l e f t  i s  r e l a t ed  t o  the f a c t  t h a t  the  plasmon frequency i n  

the  quasi-classical  approximation i s  constant,  and i n  t h a t  connection t h e  wave 
number of plasmons propagating i n  an inhomogeneous plasma changes. 

cular, (3.17) implies 

I n  pa r t i -  

We thus f ind  tha t  a plasmon propagating along the  density gradient,  ge ts  

"redder", i.e. , i ts  wave number decreases, and the  pr inc ipa l  damping mechanism 

f o r  a plasmon is  a weak damping by electrons.  

i n  a d i r ec t ion  where the  density decreases, s u f f e r  an increase i n  the  wave 

number g ,  and rapidly en te r  a region of such tha t  a s t rong damping by 

resonance ions is present there. 

plasmons i n  an inhomogeneous plasma, emitted a t  p rac t i ca l ly  any angle, later 
re turn  i n  a d i rec t ion  opposite t o  the  density gradient,  and during a t i m e  

T-., w.h[wpc' 

- 137 

Conversely, plasmons propagating 

An analysis  performed i n  [ll] has shown t h a t  

en te r  a region of s t rong damping. (Here bh/h a d  _ .  ) __- . 
- Thus, a weak inhomogeneity i n  a plasma can be  roughly accounted f o r  by 

an increment x; 
by ions,  can i n  p r inc ip l e  assure  quasi-s ta t ionari ty .  

b p c  ;/.a , and t h i s  e f f e c t ,  j u s t  l i k e  nonlinear s c a t t e r i n g  

W e  s h a l l  give a c r i t e r i o n  fo r  the  case when the  e f f e c t  of an inhomogeneity 

is  more impor t ak  than nonlinear e f f ec t s :  

;-\I- n =  (3.19) 

Now w e  s h a l l  b r i e f l y  discuss  another nonlinear process which may play an 
important r o l e  i n  the  establishment of a quasi-stationary turbulent  state i n  

33 



t 

a plasma with a current.  The r e s u l t s  obtained i n  1241 provide a bas i s  fo r  

assuming tha t  a d is in tegra t ion  of ionic-sound waves i n t o  other ionic-sound 

waves ( s -3 T' 4-S" This process is forbidden 

under t h e  conditions of a weak nonl inear i ty  [22], when i n  computing t h e  pro- 

b a b i l i t y  of a d is in tegra t ion  one uses the laws of dispersion, obtained i n  the  

l i n e a r  theory. However, when the  nonl inear i ty  is not  very weak, correct ions 

t o  t h e  dispersion l a w ,  connected with the  presence of in tense  turbulent  pulsa- 

t i ons  of ion sound r e s u l t  i n  t h e  poss ib i l i t y  of d i s in tegra t ions  of a s i n g l e  

ion-sound wave i n t o  two. 

1, may be  such a process. 

- /38 

The maximum increment S --b, S' 3 s" of a d is in tegra t ion ,  according t o  [24], . ,  - - --- ____ 
i n  a one-dimensionbl case is 

(3.12) 

with 

A rough estimate of t he  form of the  spectrum of ionic-sound waves i n  a quasi- 

s ta t ionary  state gives \EJu - k21 i n  t he  region w, 6 1 /A The dis integra-  

t i on  process of ionic-sound waves w i l l  always p reva i l  over t h e  process of a 

nonlinear s ca t t e r ing  by ions i n  the  quasi-one-dimensional case s tudied i n  [24] 
( the wave vectors are contained i n  t h e  cone Q e= 1) .  However, i n  a three- 

dimensional case the  process s + s' + s'' plays a s ign i f i can t ly  lesser ro l e ,  

s ince t h e  sca t t e r ing  at  l a rge  angles occurs only i n  a relay-l ike fashion 

(i.e., by means of a l a rge  number of sca t t e r ing  events involving small scat- 

* 

i 

t e r ing  angles) 

One may expect t h a t  t h e  d is in tegra t ion  process 3 3 'j' +SI', w i l l  lower the 

l e v e l  of ionic-sound waves, t ransfer ing  them i n t o  a region of absorption by 
ion-ion co l l i s ions  [25]. By taking account of processes of this  type, the 
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conductivity of a plasma i n  a s t rong e l e c t r i c  f i e l d  (especial ly  f o r  'E 3 

E x u  = 2 ,/-:: ,) w i l l  be higher than according t o  [5, 111 
b4 - .  

W e  s h a l l  mention s t i l l  another possible  nonlinear process occurring when /39 
there  is  an ex terna l  magnetic f i e l d  ac t ing  on a plasma. This process may have 

an important inf luence on the form of t he  spectrum of the  ionic-sound waves i n  

the  region $ * ~ / . X Q .  
of the  ionic-sound waves ( S 11 i n t o  ionic-sound waves (S '  ),' and electronic-  

cyclotron longi tudinal  waves ( C )  whose dispersion i s  b z  Uke%Q ,\ & - s'+ C . 
Under the  conditions b p ;  >'b -7 

has t h e  increment 

The process w e  have i n  mind involves a decomposition 

- -  - 

W a,, according t o  [ 331, t h i s  decomposition - _  

(3.13) 

Here, according t o  the ana lys i s ,  the decomposition i s  q u i t e  e f f i c i e n t  f o r  

ionic-sound wavks with Z - 4 / X U  
-. . -. 

A rough estimation of t he  spec t r a l  form of the  ionic-sound waves i n  the  
- - _ .  

region .k r ~ r  i /leiB taking account of such decompositions [25] , r e s u l t s  i n  t h e  

expression 
._ -_ 

(3.14) 

The estimates given here  lead us t o  assert t h a t  a l l  these e f f e c t s  must be  taken 

i n t o  account when solving a s p e c i f i c  problem involving the  ionic-sound insta- 
b i l i t y  i n  a current  plasma. 

I 

0 4. Turbulent Electroconductivity i n  an 
Isothermic Plasma 

Thus f a r  w e  have considered turbulent  e lectroconduct ivi ty  i n  a nonisother- 

mic plasma, where the  ionic-sound i n s t a b i l i t y  is  possible.  Now we s h a l l  

- / 40  
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.. 
consider the  opposite case T, 
very beginning of the  process involving the  passage of a current due t o  an 

ex terna l  f i e l d  E,. 
u n t i l  t h e i r  ve loc i ty  becomes greater  than t h e i r  thermal velocity.  

t he  beginning of development of a hydrodynamic i n s t a b i l i t y  of electron-ion 

osc i l l a t ions  which decelerates  the  d r i f t  of e lectrons,  the  lat ter process 

being discussed i n  [3].  

of papers devoted t o  t h i s  case, w e  s h a l l  no te  t h a t  i n  these papers plasma 

osc i l l a t ions  are analyzed within the  framework of the  so-called ad iaba t ic  

approximation, i.e., when t h e  accelerat ion of e lec t rons  is neglected. 

permissible only f o r  no t  very la rge  f i e lds .  

which i n  prac t ice  occurs usually a t  t h e  

In t h i s  case the  electrons w i l l  be  f r ee ly  accelerated 

This marks 

, 
Before w e  make a de ta i led  discussion of t h e  results 

This is 

In  t h e  case 

a harmonic with a wave number & passes the  i n s t a b i l i t y  region without a 

subs t an t i a l  growth ("whistling through") e 

. -  
Thus, i f  'E > E,, = ZLno? 

,/=;;;'; where L, is  the  dimension of t he  plasmap i n s t a b i l i t i e s  w i l l  f a i l  t o  

develop. Reference [26] and a l s o  [27] show how osc i l l a t ions  develop f o r  t h e  

intermediate case involving a passage from the  ad iaba t ic  t o  the  nonadiabatic 
/41 

theory of l i n e a r  o sc i l l a t ions .  

Now w e  s h a l l  proceed t o  discuss i n  d e t a i l  t h e  r e s u l t s  per ta ining t o  

turbulent electroconductivity i n  an isothermic plasma ?a 3 "r; 
noted tha t  t h e  r e s u l t s  discussed below may a l s o  qua l i t a t ive ly  apply t o  t h e  

case of a l a rge  number of escaping electrons i n  a nonisothermic plasma. 

It w i l l  be 

A s  w e  know, as soon as t h e  ve loc i ty  of e lectrons relative t o  ions exceeds 

the  thermal velocfty,  small f luc tua t ions  w i l l  grow with t i m e  i n  the  plasma. 

The f luc tua t ions  which increase as t h e  t i m e  goes on der ive their energy from 

t h e  electrons,  thus decelerat ing them in  t h e  processo 
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Buneman [3] w a s  the f i r s t  t o  describe the mechanism responsible f o r  a 
growth of appreciable concentrations of charged p a r t i c l e s  out  of small fluctua- 

t i ons  which i s  followed by a deceleration of t h e  i n i t i a l  e lec t ron  d r i f t .  

model is  e s s e n t i a l l y  as follows. 

e lec t ron  d r i f t  is  assumed t o  be turned o f f ,  so  t h a t  there  remains only t h e  

f i e l d  of f luc tua t ions  e The paper discusses only n o n r e l a t i v i s t i c  ve loc i t i e s ,  

t h e  plasma is assumed t o  be  i n f i n i t e  i n  ex ten t ,  and the ion-electron c o l l i s i o n s  

are neglected. 

as w e  know, w e  have the  following dispersion equation f o r  perturbations i n  a 

system involving two co l l id ing  streams of e lec t rons  and ions  

H i s  

The f i e l d  which gave rise t o  t h e  o r i g i n a l  

I f  t h e  thermal d i s t r ibu t ion  of v e l o c i t i e s  is neglected, then, 

Its so lu t ion  is  ~ 1 )  r. bL 
growth increment, corresponding t o  a given ,xs9?z being t h e  wave vector ,  and 

3 t he  e l ec t ron  d r i f t  veloci ty .  The growth increment has a sharp maximum- - 

($, where “2, is t h e  frequency, and d is  the  /42 
- 0  

2 wJ/3 - - 7- LU of width b (a) ‘3wp(~) ?J 
~ -- JW4 7& Cr3,,<A/Hy‘3 (@l2@ (peak) a t  G)\* _ _  - I ____  

which corresponds t o  0,2S f o r  a hydrogen plasma, 

This means t h a t  i f  thermal v e l o c i t i e s  are neglected, t h e  f luc tua t iona l  

per turba t ions  i n  t h e  plasma w i l l  increase  primarily near  s.,~ = Up0 1%. 

The question: what is the  value o f , t h e  d r i f t  a t  which the  mechanism of 

the  growth of plasma o s c i l l a t i o n s  begins i n  t h e  stream f o r  8T;comparable 

with t h e  d i r e c t i o n a l  energy of e lec t rons ,  is  solved by Buneman by using a 

generalized i n t e g r a l  dispersion equation which takes  i n t o  account the Maxwel- 

l i a n  ve loc i ty  d is t rubut ion  of e lec t rons  and ions. 
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where 

.. . .  . . - . I  .. . . 

5-5 
of elementary functions,  and the  function laz'd2 i n  a complex domain, - / 4 3  

0 

Buneman extracted from t h e  diagram thus obtained t h e  following numerical 

r e su l t s :  

1) A t  m y  d r i f t  ve loc i ty  only those f luc tua t ions  may increase whose 

wavelength is  grea te r  than 'xi, ( A:, is the Debye length).  

2) An increase i n  the  f luc tua t ions  w i l l  occur if the  d r i f t  ve loc i ty  is 

electrons must reach 0.902-T:in __ order f o r  t he  growth t o  begin (and not  g rea t e r  

'than gr, as is usually assumed). 

For wavelengths less than $,32i4 - and d r i f t  energies less than @~fq the 

Landau damping dominates over the  mechanism involving the  increase i n  the  

amp lit ude 

Then the  question w a s  discussed: from what level of the  f luc tua t ion  

in t ens i ty  does the process of t h e i r  growth begin? 

The hea t  i n  the plasma is d i s t r ibu ted  both among 6 - .  d, degrees of 

freedom of e lec t rons  and ions,  and among "free" plasma osc i l l a t ions .  

number of degrees of freedom i n  undamped plasma osc i l l a t ions  is estimated as 

The 
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follows. L e t  us assume t h a t  before the  acce lera t ion  due t o  t h e  electric f i e l d  

takes  place,  o s c i l l a t i o n s  a t  a l l  wavelengths occur i n  t h e  plasma. In  view of 

the  presence of a s u f f i c i e n t  number of e lec t rons  with v e l o c i t i e s  Y C, 

t h e  Maxwellian ve loc i ty  d i s t r ibu t ion ,  t h e  wavelengths of length 5 2n.3 
u5y=/Oph 
nance between t h e  phase ve loc i ty  of t he  wave and the  ve loc i ty  of an appropriate 

group of e lectrons.  

subject  t o  Landau damping, s ince  t h e  number of p a r t i c l e s  with v e l o c i t i e s  

,in 

w i l l  be  subjec t  t o  Landau damping whose physical cause is  t h e  reso- 

Wavelengths of grea te r  length w i l l  no t  i n  p rac t i ce  be 

.'Ci>.3?% i n  t he  Maxwellian t a i l  is negl ig ib ly  small, l e t  alone the  f a c t  t h a t  

a continuous model of a ve loc i ty  d i s t r i b u t i o n  i s  no t  applicable i n  t h i s  region. /44 
Hence, plasma o s c i l l a t i o n s  with t h e  phase v e l o c i t i e s  qy > 313;4 may be  con- 

s idered  t o  be f r e e  modes, which permits t h e  wave numbers 
--*_ __ 

- -  -. - 

On the  o ther  hand, i f  one considers a plasma occupying a cube of s i d e  

cm, t h e  wave numbers 

of wave numbers, t h e  

tances Q r r / ~ )  from 
- 

should b e  multiples of 2C/& -- cm-', i.e. , i n  the K-space - 
poin ts  t h a t  correspond t o  d i s c r e t e  V; must l i e  a t  dis- 

each o the r  which gives 

as t h e  number of f r e e  o s c i l l a t o r s  each of which carries an energy 

( k i n e t i c  and f i e l d  energy). 
&T- 

I f  one assumes t h a t  i n  p r a c t i c e  t h e  f luc tua t ions  w i t h  '%-k-Co,,/2( w i l l  
. L.-- 

increase  i n  t h e  i n t e r v a l  
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( for  H) ,  then from the  e n t i r e  &.-sphere one must separate  out only a layer  of 

thickness %A and a radius  approximately equal t o  4 /$Le, since the dis tance 

from the  center  of t he  A-sphe re  t o  a spher ica l  l ayer  taken approximately as 

a disk is  <d-t/'3X, ( the la t ter  being the  radius of t he  -sphere), s ince  Tisi 
(ti>>%. 

In  the d isk  under consideration, i n  the g - s p a c e  there  are (~c44/3f-) 
~ - _- [, /Zi;)% f r e e  modes, each with an energy +Tj. - 145 

L - -  , hk Hence, t h e  energy of f luc tua t ions  capable of rap id  increase is , , ~ g -  XT 
-- - . .,- -- ...._ 

(9; A , ) - i  . 
The r a t i o  of t he  energies  of f luctuat ions,  capable of amplification, t o  

the  energy of directed motion (per un i t  volume) 
1 

Buneman askumes t h a t  t he  t i m e  required f o r  f u l l  accelerat ion is  equal t o  

the  t i m e  t h a t  i t  takes f o r  t he  energy of turbulent  pulsat ions t o  equal t he  

energy of directed motion. Since the  energy of turbulence increases as 
, where &, ' is the maximum value of t he  growth increment 0.058 _- . &p_p 

f o r  hydrogen, then the  deceleration t i m e  is equal t o  2 7 . 4  which is the  plasma 

period (deceleration t i m e  is  computed from the  equation p 
A more accurate  calculat ion,  taking i n t o  account a correct ion t o  

on M', followed by in tegra t ion  over d.W gave 28.4 plasma periods f o r  a 

- C 2 o L t )  - __ . =i) . 
42 depending 

typ ica l  " examp le  considered ,, 

It must b e  noted t h a t  a calculat ion of t he  growth of turbulent  pulsat ions 

is made under an assumption &&,, but ,  on the o ther  hand, on the  bas i s  
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of t h i s  ca lcu la t ion  a conclusion is obtained about t h e  decrease of 
pulsa t ions  increase. Thus, t h e  ca lcu la t ion  i s  approximate. 

as the /46 

Considering t h a t  t he  p i c tu re  of i n i t i a l  f luc tua t ions  i n  the  J& -space 

which then begin t o  increase  is r a t h e r  d i f f i c u l t  t o  v i sua l i ze ,  Buneman'separ- 

a t e l y  considers t h e  process of a development of a l o c a l  perturbation (one- 

dimensional), having t h e  form ~ ~ ( , ~ f ? ~ ~ ' ~ Q - ' ' b ' d K , ; .  - ._- 

perturbation w i l l  have t h e  form: 

During a t i m e  & \  t h e  

where ~ ' ( 4  , is the  "increasing" so lu t ion  of t h e  dispersion formula. 

Using t h e  method of s t eepes t  descent, one f inds  the f i r s t  term i n  t h e  

exponent which is independent of ,&. This term e s s e n t i a l l y  determines 

gcr,tr I 
- 

I f  w e  conside; t h e  term quadratic i n  ',U.-$ i n  t h e  exponent, we obtain a 

f a c t o r  which depends weakly on 3, +. 
The las t  expression makes it clear t h a t  t he  logarithm of the  per turba t ion ' s  

amplitude increases as cut - s * ) ~ '  ?('I3 , i.e. 
t i o n  spreads out  between its i n i t i a l  pos i t i on  and t h e  pos i t ion  krUt  which 

is  where the  e l ec t rons  move. As t he  per turba t ion  spreads, i t  increases  every- 

where (although no t  equally). The peak of t h e  per turba t ion  moves w i t h  a 
vel0 c i  t y  {/: > 'qA*. 

as t i m e  goes on, t h e  perturba- 

- /47 
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The or ig in  of t he  coordinates i n  t h i s  process is  never f r e e  of the  

i n i t i a l  per turbat ion which means tha t  it is  impossible t o  use t h i s  mechanism 

fo r  a control led amplification (of course, i f  ions do not  move i n  the  same 

di rec t ion  as electrons) .  

A study of t h e  imaginary p a r t  of Equation (4.4) shows tha t  i t  approaches 

Up, X / Y  - , i.e., during the  course of  t he  per turbat ion it is periodic  with a 
period '2 \iU /a fl. 

During t h e  last fewperiodswhen the  perturbations increase (and, properly, 

a subs t an t i a l  portion of t he  directed energy is  converted i n t o  t h e  energy of 

f luctuat ions)  t he  nonlinear e f f ec t s ,  involving the  decelerat ion of t he  stream 

and an in te rac t ion  among waves, become very important. 

The estimation of re la t ionships  between the  perturbations of ve loc i t i e s  

and dens i t i e s  f o r  ions and electrons a t  a frequency corresponding t o  the  maxi- 

mum increasing solut ion,  lead Buneman t o  conclude t h a t  non l inea r i t i e s  i n  t h e  

motion of ions may be neglected. 

The main e f f ec t  of t h e  nonlinear process is  the  tendency toward isotropy. 

(In t h e  case*of a weak nonl inear i ty ,  see [30], [12]). A f a i r l y  sharp spectrum 

with .k E 

ultimately i so t rop ic  conditions w i l l  be  es tabl ished,  and the  d r i f t  energy w i l l  

be  d i s t r ibu ted  equally among a l l  possible  plasma osc i l l a to r s .  

/2( , produced during a l i n e a r  increase,  w i l l  spread out,  and 

In  a one-dimensional case, a numerical ca lcu la t ion  was made on a computer 

t ha t  confirmed t h e  above asser t ion ,  

Qual i ta t ively,  "turbulent" mixing occurs i n  t h e  following way. 

The e lec t ron  layers  o s c i l l a t e  and produce a w a l l  of space charge which - /48 
r e f l e c t s  t h e  electrons.  Thus "col lect ive interact ions"  take place. 
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It must be noted t h a t  the  e lec t rons  r e c o i l  from t h e i r  own f luc tua t ion  

f i e l d s  ( the  ions  are uniformly d is t r ibu ted) .  

The f i r s t  e lec t ron  w a l l  is  sca t t e red  within a shor t  t i m e ,  then i t  

i n t e n s i f i e s  again and causes fu r the r  r e f l ec t ions .  

already been r e f l ec t ed  once are re f l ec t ed  again 

thus are "trapped". 

Some e lec t rons  t h a t  had 

from t h e  second w a l l ,  and 

Other e l ec t rons  have enough energy t o  pass a l l  w a l l s  i n  both d i rec t ions .  

The mixing process r e s u l t s  i n  the  appearance of many currents .  

A case which is more important in  p r a c t i c e  involves a s i t u a t i o n  i n  which 

I f ,  according t o  t h e  d r i f t  is produced by a uniform external electric f i e l d .  

t h e  mechanism described, t h e  energy of t h e  d i rec ted  motion is converted i n t o  

random energy, but t h e  constant f i e l d  "stretches" t h e  d r i f t ,  then the t i m e  

required f o r  a new "disruption" of the  d r i f t  is on t h e  order of t h e  re laxa t ion  

t i m e ,  and is equal t o  2sfwpe which is  t h e  plasma period. 

"frequency" of t h e  c o l l e c t i v e  in t e rac t ions  is  ''Sa* u p s / q  (where P w ~ O ) ) ,  __ and 

the constant ve loc i ty  can be  found from t h e  r e l a t i o n  h ' k W p r / [ ) _ = ~ . E .  _ _  
_.___ 

Consequently, the 

Hence, the conductivity is' equal t o  

I 

r 

L e t  us consider insmore d e t a i l  t he  case when t h e  f i e l d  of t h e  measured quant i ty  /49 
slowly increases  the  t r a n s l a t i o n a l  ve loc i ty  ~ ( t y ,  a t  t h e  s a m e  t i m e  as the 

increasing turbulent  pu lsa t ions  u l t imate ly  r e s u l t  -in a dece lera t ion  and an 
establishment of f l ~  = mfi - 

The c r i t e r i o n  f o r  t h e  a p p l i c a b i l i t y  of t h e  "adiabatic" theory we  are 

discussing is: 

: I  
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The curve ~ ' [ g , , )  , having a maximum -! < a t  KU T b r q ,  is replaced i n  rough 

estimates by a "rectangular" function, i.e., t he  wave numbers ,&, near the  

value up /%-, i n  an i n t e r v a l  of width p.I2< _.- UJy,  /% have a growth increment 

dw and zero outside of t h e  in t e rva l .  
-- - 

The amplification of individual  wave numbers continues only as long a s  

"!+(.>-' is ins ide  the i n t e r v a l  L ~ = O . L ~ ~ f n / - ~ a b o u t  ?bpt/k'. -- 

one can say t h a t  t h e  wave number i s  beyond resonance. 

A t  o ther  t i m e s  

The continuation of the amplification of a f luc tua t ion  with a wave number 

is l imi ted  t o  the  t i m e  b+*=-'u//CPOm),, - _ -  and the  f luc tua t ion  energy is __  
amplified by . e=, where 

A t  a t i m e  t the  waves i n  the  neighborhood of c('ue( /ucc) IL bm~'e't are 

unstable. F i r s t  waves with l a rge  A become unstable,  and by the  t i m e  t = t , 
a l l  6- M u p u  / e  st4 w i l l  pass  through the  t i m e  i n t e r v a l  i n  which amplifica- 

t i o n  occurs. 

and the  smallest g. 
Thus, the minimum ?--= ~. 0- rdh-b*+d will be achieved by later 

The upper l i m i t  of A.( is  determined by the  Debye length ,k h u G  2 ~ r  / A ,  . - / 50  

However, of ten an even more ser ious  l imi t a t ion  y i e l d s  a condition of adiaba- 

t i c i t y ,  6 << cd,~rv~d~ /Q$ e Furthermore, i n t eg ra t ing  over all wave numbers, 

which r e s u l t  i n  the exponent ranging from 1 t o  <.,, w e  s h a l l  f i nd  the  t o t a l  

increase i n  energy. 

- 1  

The i n i t i a l  f luc tua t ion  energy per  un i t  volume amounts t o  @ . & / t g ) - x ~  
- -  - .- 

c &x,&z which is a Sy is< (et/~~)* per  s i n g l e  e lectron.  

can express 6% i n  terms of CY 

Using (4.5) we 
, . -. -- 0 

L - I  
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thus obtaining t h e  t o t a l  turbulent  energy pe r  e lectron:  

the i n t e g r a l  is no t  s ens i t i ve  t o  the  lower l i m i t ,  and For l a rge  T, = 7, 
is equal t o  Gp ' t ;  /T,2:1: For hydrogen (denoting by E ;=a/L"=e q"z4.64 

&, Jh 

7 & - -. 
-9 a 

10 &,I the  Coulomb f i e l d  of t he  neares t  neighbor i n  a cubic latice, and by _ -  :>r the  energy of i n t e rac t ion  with the  neares t  neighbor), we have 
- . .  

During tha t  t i m e  the  energy of directed motion w i l l  increase - /51 t o  

( for  hydrogen). 

is  

Hence, t h e  condition f o r  the  d r i f t  t o  be ha l ted  by f luc tua t ions  
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Numerical estimates show t h a t  the  t i m e  required f o r  establishment of a 

constant turbulent current  is on the  order  of 100 iT /GpeJ f o r  a wide range of 

applied f i e l d s .  

The estimate of the  t i m e  during which the  accelerat ion may occur without 

disturbances f o r  weak f i e l d s  must be modified. Otherwise, the  approximation 

(4.6) is  inva l id  f o r  small -t=. A major portion of the  t i m e  of accelerat ion 
. .  

may f a l l  i n  t he  s t a b l e  in t e rva l  -Gi < o.dw7, and then weak f i e l d s  may not  

be ab le  t o  acce lera te  e lec t rons  t o  0.9 kT without co l l i s ions .  For the  

electron-ion plasma, t he  requirement t h a t  w e  neglect  c lose in t e rac t ions  is 

reduced t o  

co l l i s ions  t o  3,- then they already are able  t o  escape. 

- /52 

).' ~ ~ p ~ Q / @ . - A c ) ' ,  f o r  - i f  t he  e lec t rons  are accelerated without - 
_ _  

The mechanism w e  are discussing br ings the  "escaping" e lec t rons  t o  a h a l t  

by way of co l l ec t ive  in te rac t ions .  The conductivity is estimated here  as 

Thus, t he  e s s e n t i a l  r e s u l t  of Buneman's paper w a s  t o  give a q u a l i t a t i v e  

p i c tu re  of "electrodynamic" heating. 

\ N 100 plasma periods. 

d i rec ted  motion is  converted i n t o  heat.  

es tabl ished,  but as soon as the  energy of d i rec ted  motion reaches a value 

corresponding t o  a new "temperature", t h e  t r ans l a t iona l  motion breaks down, 

e tc .  

A s t rong f i e l d  produces d r i f t  within 

This is followed by turbul iza t ion ,  and t h e  energy of 

Then the  directed ve loc i ty  is re- 

Thus, t he  temperature (a general izat ion of the usual equilibrium concept) 

increases,  and a d r i f t  e levat ion of random energy never lasts very long. 

A more de ta i led  discussion of the process of decelerat ion of a beam of 

escaping" e lec t rons  i n  a s t rong electric f i e l d  \E- >> w, ef fec ted  by turbu- 11 
__ - - - - - 

l e n t  pulsat ions w a s  given by Shapiro E281 who used the  hydrodynamic approxima- 

t ion.  
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The i n i t i a l  system of equations for the problem consists of the Boltzmann- 

Vlasov equations for electrons and ions and of Poisson's equation: 

~ - .. 

.. . ... - . . - - .. . . . . .- . r 

4 

(4.10) 

We introduce the assumptions that the distribution functions may be 

written as 

where 

and ,,v i s  an arbitrary microscopic volume, 
- 

G4, can be written as 
- - -  

Using (4.11) and (4.12) i t  w a s  found in [28] that 

(4.11) 

(4.12) 

(4.13) 

(4.14) 
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n,i - and, furthermore, multiplying t h i s  by yu\ 

ve loc i t i e s ,  t h e  equation f o r  the  t r ans l a t iona l  momentum of e lec t rons  and ions 

i n  the  plasma is 

*:. and in tegra t ing  over t he  

(4.15) 

In discussing plasma osc i l l a t ions ,  Shapiro used t h e  usual dispers ion - I 5 4  

equation f o r  t he  case of a constant d r i f t  which is appl icable  only when the  

ad iaba t i c i ty  condition i s  s a t i s f i e d  
- 

(4.16) 

The e n t i r e  discussion assumed the  condition of l i n e a r i t y  of o s c i l l a t i o n s  

2 EEy /VV\ ~3 ui << 4 ( E%, is  the  amplitude of o s c i l l a t i o n s  with a wave number 
- - 9  

Furthermore, Shapiro 

force  
* .  

made an approximate ca lcu la t ion  of t h e  decelerat ing 

-_ 

(4.18) 

using the  hydrodynamic equations of motion, cont inui ty ,  and Poisson's equation, ' 

as w e l l  as the  dispers ion equation (4.1) which gives a complex frequency of 

o sc i l l a t ions ,  CG - ;g ( the  increasing solut ions are used) 

tude of o s c i l l a t i o n s  was determined from the  condition 

The i n i t i a l  ampli- 

(4.19) 

As a r e s u l t  of laborious calculat ions,  an equation was  obtained f o r  t he  

t r ans l a t iona l  momentum i n  t h e  form 
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where 

, 2  - - - -  - 
$1 is  determined from the  equation d'(y)-.= 3, 

of the  dispersion equation (4.1) 

= Lo -<% is the  so lu t ion  /55 I . ___ - -_ -- --. - _ _  

An approximate in tegra t ion  of Equation (4.20) for the  hydrogen plasma 

gives 

* I 

( d, -0,041) fo r  ' 
d, 

maximum momentum is achieved. 

(< 't s G  where , c / b p s  is the t i m e  when the  
I - - 

From the  above expression it is clear t h a t  the  e lec t ron  gas is i n i t i a l l y  

accelerated l i nea r ly  with t i m e ,  and then it begins t o  be  decelerated by in t e r -  

ac t ions  with turbulent  pulsations.  
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The maximum momentum of the  electron f l u x  is a t ta ined  at  a t i m e  

which can be  determined from the  equation 

(4.22) 

. . -. .- . ...... .... -. . .  . 

The maximum value of t he  t r ans l a t iona l  e lectron momentum is  determined - I56 
by the  formula 

... 

........ ................... . .  
........... 

This corresponds t o  a maximum conductivity of t he  plasma 

(4.24) 

For & > 
t he  electron temperature and a decrease of t he  growth increment, and an appear- 

Q, Equation (4.20) becomes inappl icable  because of an increase i n  

ance of nonlinear e f f ec t s .  

- E s t i m a t e s  made by Shapiro showed that a t  ka the  energy of plasma 

osc i l l a t ions  is much smaller than the  t r ans l a t iona l  energy; and consequently, 

a t  tha t  t i m e  t h e  amplitudes of t he  o s c i l l a t i o n s  are small as compared with 

those a t  which the re  occurs a pronounced "nonlinear mixing". 

Furthermore, then Shapiro [29] discusses the  same problem about the 

decelerat ion of electrons by turbulent  pulsat ions,  but  d i r e c t l y  on t h e  b a s i s  

of t he  k i n e t i c  equation, 

Making in  Equation (4.13) _ _  - -  a subs t i t u t ion  . . . .  
- _-- 

\r\l d r - q +  
.... __ - .. .... _- .. -1-- ........... ..v " . .  
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the  equation becomes 

A -  

Subs t i tu t ing  i n  t h i s  equation the expansions: 

( 4 . 2 5 )  

and using the  usual formulas of the  l inear ized  theory f o r  o s c i l l a t i o n s  i n  the  

plasma 

where 6% e &,.-cbrc, is the  so lu t ion  of the  dispers ion equations Shapiro 

E291 obtained- an equation f o r  
,. 

(of the Fokker-Planck type). 

4- 
&q and p c$ are ra the r  complicated in t eg ra l s ,  depending on t h e  

parameters \E,, ,*b e 

( 4 . 2 6 )  

The equation f o r  Fourier components can be  solved using the  method of 

successive approximations, where W / u 0  is the  expansion parameter Then a 

5 1  



f a i r l y  complicated d i s t r ibu t ion  function i s  found which has d i f f e ren t  longi- 

tud ina l  and lateral time-dependent temperatures: 

(4.27) 

. . . , . . 

The growth of thermal energy i n  the  plasma is  re la ted  t o  Landau damping- - I 5 8  

The most i n t e re s t ing  r e s u l t  of Shapiro's paper is the f a c t  tha t ' t empera ture  

anisotropy is achieved with increasing , 

The equation for the  t r ans l a t iona l  momentum f ) z = ~ - ~ d 2 ~ ( & , ~ ) ~ ~  is 
therefore  modified: 

( 4  ., 28) 

and the maximum momentum of the  e lec t ron  stream is a t t a ined  at  K=Tf9 which 

can be determined from the  equation 
I-.-- - .- 

(4.29) 

As before, a f t e r  a t i m e  T,= t he  e n t i r e  theory is s t r i c t l y  speaking inappli-  

cable. 

and t h e  process is described by the  theory presented i n  t h e  preceding sect ion.  

P rac t i ca l ly  speaking f o r  CC >>re, t he  plasma becomes nonisothermic, 
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